Visual Radar

Completed Technology Project (2017 - 2018)

Project Introduction

To define sensor and terrain relative navigation (TRN) requirements for high speed motion at low altitudes (look-ahead distance, motion blur) and develop collaborative stereo technology for robust vision-based TRN.

Anticipated Benefits

In addition to the NASA Aeronautics application, represented by NASA Armstrong, the DoD is also very interested in this technology for flexible surveillance systems (visual radar), perimeter surveillance (mover detection), etc.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Pasadena,
	Organization	Center	California
Armstrong Flight Research Center(AFRC)	Supporting	NASA	Edwards,
	Organization	Center	California

Visual Radar

Table of Contents

Project Introduction	
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	
Project Website:	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2
Target Destination	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Center Innovation Fund: JPL CIF

Center Innovation Fund: JPL CIF

Visual Radar

Completed Technology Project (2017 - 2018)

Primary U.S. Work Locations

California

Project Transitions

October 2017: Project Start

September 2018: Closed out

Closeout Summary: Aircraft/spacecraft need robust collision avoidance for nav igation in close proximity to terrain (low altitude flight, small body navigation) th at can tolerate non-static environments. This work involved developing a collabo rative stereo technology for robust passive (vision-based) terrain relative naviga tion based on two non-static cameras. The cameras can be small enough to mount on wing-tips, providing a sufficient baseline.

Project Website:

https://www.nasa.gov/directorates/spacetech/innovation_fund/index.html#.VC

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Fred Y Hadaegh

Principal Investigator:

Roland Brockers

Technology Maturity (TRL)

Technology Areas

Primary:

 TX16 Air Traffic Management and Range Tracking Systems
 TX16.5 Range Tracking, Surveillance, and Flight Safety Technologies

Target Destination

Others Inside the Solar System

